1.基本信息:
吴东伦,男,副教授。2013年毕业于四川大学, 获理学博士学位。2015年9月完成博士后研究,顺利出站。前后共主持两项国家自然科学基金项目,均已顺利结题。2018年7月-2019年7月受国家留学基金委资助,公派留学到美国犹他州立大学访学一年。2020年被四川省人社厅认定为“四川省海外高层次留学人才”。发表 SCI 论文 20余 篇, 其中 2 篇论文曾入选ESI高被引论文。
2.联系邮箱:wudl2008@163.com
3.研究领域:
[1] 非线性泛函分析 [2]微分方程与动力系统
4.教学工作:
[1]高等数学 [2]线性代数 [3]微分方程等
5.学术成果:
[1]. R-Q L., D.-L. Wu and J.-F. Liao, Homoclinic solutions for subquadratic Hamiltonian systems with competition potentials, Electronic Journal of Qualitative Theory of Differential Equations, 5 (2024)
[2]. D.-L. Wu, Homoclinic solutions for a class of asymptotically autonomous Hamiltonian systems with indefinite sign nonlinearities, Electronic Journal of Qualitative Theory of Differential Equations, 31 (2023)
[3]. D.-L. Wu, et al. Analysis of Hamming and Hausdorff 3D distance measures for complex pythagorean fuzzy sets and their applications in pattern recognition and medical diagnosis, Complex & Intelligent Systems (2022): 1-12.
[4]. D.-L. Wu, Fengying Li and Hongxia Lin, Existence and nonuniqueness of solutions for a class of asymptotically linear nonperiodic Schrödinger equations, Journal of Fixed Point Theory and Applications 24.4 (2022): 72.
[5]. D.-L. Wu, C.-L. Tang, X.-P. Wu, Homoclinic orbits for a class of second-order Hamiltonian systems with concave-convex nonlinearities, Electronic Journal of Qualitative Theory of Differential Equations, 6 (2018)
[6]. D.-L. Wu, C. Li, P.F. Yuan, Multiplicity solutions for a class of fractional Hamiltonian systems with concave-convex potentials, Mediterranean Journal of Mathematics, 15 (2018)
[7]. D.-L. Wu, X. Yu, New homoclinic orbits for Hamiltonian systems with asymptotically quadratic growth at infinity, Qual. Theory Dyn. Syst. 19 (2020).
[8]. D.-L. Wu, F. Li, Solutions for fourth-order Kirchhoff type elliptic equations involving concave-convex nonlinearities in RN, Comput. Math. Appl. 79(2) (2020)
[9]. D.-L. Wu, H.X. Lin, Multiple solutions for superlinear Klein–Gordon–Maxwell equations. Mathematische Nachrichten. 2020
[10]. D.-L. Wu,Existence and Multiplicity of Solutions for Sublinear Schrödinger Equations with Coercive Potentials, Mathematical Problems in Engineering, (2019).
[11]. D.-L. Wu, C.-L. Tang, X.-P. Wu, Existence and nonuniqueness of homoclinic solutions for second-order Hamiltonian systems with mixed nonlinearities, Communications on Pure and Applied Analysis, 15 (2016)
[12]. D.-L. Wu, C. Li, P.F. Yuan, Periodic solutions for a class of second-order Hamiltonian systems of prescribed energy, Electronic Journal of Qualitative Theory of Differential Equations, 2015 (2015)
[13]. D.-L. Wu,C.-L. T.,X.-P. Wu,Subharmonic and homoclinic solutions for second order Hamiltonian systems with new superquadratic conditions, Chaos, Solitons & Fractals, 73 (2015)
[14]. D.-L. Wu, S.Q. Zhang,New hyperbolic orbits for a class of singular Hamiltonian systems, Boundary Value Problems, 2015:86 (2015) .
[15]. D.-L. Wu, S.Q. Zhang, Homoclinic Orbits to Infinity for Second Order Hamiltonian Systems with Fixed Energy, Electronic Journal of Differential Equations, 2015 (2015)
[16]. D.-L. Wu,X.-P. Wu,C.-L. Tang, Homoclinic solutions for second order Hamiltonian systems with small forcing terms,Bulletin of the Belgian Mathematical Society-Simon Stevin, 19 (2012)
[17]. D.-L. Wu,X.-P. Wu,C.-L. Tang,Homoclinic solutions for a class of nonperiodic and noneven second-order Hamiltonian systems. Journal of Mathematical Analysis and Applications, 367 (2010)
[18]. Qin Zheng, D.-L. Wu, Multiple Solutions for Schrödinger Equations Involving Concave-Convex Nonlinearities Without (AR)-Type Condition, Bull. Malays. Math. Sci. Soc. (2021)
[19]. C. Li, R. P. Agarwal and D.-L. Wu, Existence and multiplicity of solutions for a class of superlinear elliptic systems, Advances in Nonlinear Analysis, 2018.
[20]. C. Li, Z.-Q. Ou, D.-L. Wu, On the existence of minimal periodic solutions for a class of second-order Hamiltonian systems,Applied Mathematics Letters, 43 (2015), 44-48.
[21]. C.H. Deng, D.-L. Wu, Multiple homoclinic solutions for a class of nonhomogeneous Hamiltonian systems, Boundary Value Problems, 2018:56 (2018).
6.科研与学术成果奖励:
四川省现场统计协会优秀成果奖一等奖